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Abstract

‘“’.," While the set packing polytope, through its connection wi}.h_vertex

p;cking, has lent itself to fruitful investigations, little is known about the set
covering polytope. We characterize the class of valid inequalities for the set
covering polytope with coefficients equal to 0, 1 or 2, and give necessary and
sufficient conditions for such an inequality to be minimal and to be facet
defining. We show that all inequalities in the abové class are contained in the
elementary closure of the constraint set, and that 2 is the largest value of k
such that all valid inequalities for the set covering polytope with integer
coefficients no greater than k are contained in the elementary closure. We
point out a connection between minimal inequalities in the class investigated
and certain circulant submatrices of the coefficient matrix. Finally, we discuss
a ﬁrocedure for generating all the inequalities in the above class, as well as
inequalities that cut off a fractional solution to the linear programming
relaxation of the set covering problem, and inequalities whose addition to the

constraint set improves the lower bound given by a feasible solution to the

dual of the linear programming relaxation.
{

——

T\ccesion For \

N

NTIS CRA&I N
a
a

OTiIC TAB
U..annour.ced
Justitication

BY e
st ibution |

Avallability Codes

“Avail and / or
Dlst Special




ZEIEAA

*
-

ol
Py

s

1. Introduction

-

The set covering problem can be stated as

._.,,-

+

(SC) min{cx | Ax > 1, x = {0,1}"}, ]

~

where A = (aij) is an m x n matrix with a:...j e {0,1}, YV i,j, and 1 is the

‘D_"" -

m-vector of 1’s. If Ax > 1 is replaced by Ax = 1, the problem is called set

G’y — S an ey

partitioning. Both models have applications to crew scheduling, facility

\S location, vehicle routing and a host of other areas (see Appendix to Balas and
:\3 Padberg [3] for a bibliography of applications).
e If we reverse the inequality in the definition of (SC), we obtain the set
3 packing problem
o (SP)  max{cx | Ax < 1, x & {0,1}"}

.. which is known to be equivalent to the vertex packing problem on the
; _» intersection graph GA of A. Both (SC) and (SP) are NP-complete problems
'- for a general 0-1 matrix A. As far as structural properties go, because of the
& connection between (SP) and vertex packing, the properties of the set packing
2 polytope (the convex hull of points satisfying the constraints of (SP)) have
: been thoroughly studied. In particular, many classes of facets of this
‘& polytope have been identified (see, for instance, [6], .[7 1), as well as families of
' matrices A for which the corresponding polytope is given by the linear
: :f inequalities Ax < 1, 0 < x < 1. The same cannot be said about the set
: covering polytope
:; P1(A) := conv{x & R® | Ax>1, 0 <x <1, x integer},

; or its more relaxed relative, the polyhedron
: P’I*(A) := conv{x z " | Ax 21, x> 0, x integer),
: about which much less is known. In the following, we will denote
§3 P(A) := {x e " | Ax > 1, 0 < x < 1}, P¥(A) := {x e R® | Ax > 1, x > 0}.
Z' . Let M and N be the row and column index sets, respectively, of A, and let
!
& 1
&
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?‘i' and’ aj denote the ;+h réw and the j

th
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R'E M and S € N, we will write ASR for the suzmaf.rix of A whose rows and
columns are indexed by R- and S, respectively. Also, we will denote AR =
A: and As = A: Finally, for i ¢ M, we will denote Ni iz {je N | aij = 1}.

A polyhedron is the intersection of a finite number of halfspaces. A
polytope is a bounded polyhedron. A face of a polyhedron is the intersection
of the polyhedron with some of its boundary planes. For an n-dimensional
polyhedron, the 0-dimensional faces are its vertices, the (n-1)-dimensional
faces are its facets. An inequality is valid for a polyhedron P if it is

satisfied by all x = P. An inequality ax > a, is dominated by, or is a

o

weakening of, the inequality px > g if « > 8. If in addition @; > ﬁj
for some j, then ax > « is strictly dominated by #x > @y A coefficient
a; of a valid inequality ax > g is minimal if ax > @ becomes invalid when
; is decreased (without changing other coefficients). A valid inequality
whose coefficients are all minimal is called minimal. Thus a minimal inequal-
ity is one not strictly dominated by any valid inequality. An inequality ax >
ag valid for a polyhedron P, defines (or induces) a facet of P if and only if
ax = a for n (= dim P) affinely independent points x & P. Valid
inequalities that are facet defining are minimal, but the converse is not
true.

Among the few facts known about the polyhedra P{(A) and PI(A) are the
following: We assume throughout that A has no zero columms or zero rows.

1. Bvery vertex of Ff(&) is a vertex of P (A); hence any inequality
that defines a bounded facet of‘P?(A) is also facet defining for P}(A); and
any facet defining inequality for P}(A) that is satisfied by all x ¢ Pf(A)

is also facet defining for P;(A).

r\x'..-‘\_-“...'_ " ..:.vl-.._.‘-u R

column of A, respectively. ¥For any
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- 2. A valid inequality for PI(A) (for P;(A)) cuts off a vertex of P(A)
T~ T (of *P¥(A)) if and only™if ‘it is uot “a positive linear combination of

- ipequalities of the system Ax 2 1, 0 < x <1 (of the system Ax 2 1, x 2 0).

3. P;(A) is full dimensional. P (A) is full dimensional if and only if
|W| 5 2 for all i s M.
; In the following we assume that PI(A) is full dimensional.

4. The inequality X; 2 0 defines a facet of p*(A) if and enly if

Py
d
]
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l”l\[.]}' > 1 for all i: M It defines a facet of P (A) if and only if
|\ (i3l > 2 for all i« M.

5. The inequality xj < 1 defines a facet of PI(A).

6. All facet defining inequalities ax } « 0 for P;(A) (for PI(A) ) have

RTREE

. a2 0ifa 0’ 0
‘“3 7. The inequality
E(x; 2 W) 2
© defines a facet of P"(A) if and only if there exists no ke M with I/‘ )VI
; It defines a facet of P (A) if and only if (i) there exists no ket M with
'_’. with N ; IVI; and (ii) there exists no jz N \ N such that Ayiy £} contains
the circulant of order |N1 | + 1 with exactly one 0 in every row and column.
J-; 8. The only minimal valid inequalities (hence the only facet defining
L;‘, inequalities) for P;(A) (for PI(A) ) with integer coefficients and righthand
k

side equal to 1 are those of the system Ax ) 1.

Statements 1 through 6 are easily seen to be true. A proof of statement

-

Ay Ay

7 for p’{(A) is to be found in [1], and for P;(A) in [5].

_ Proof of 8. Let =nx > 1 be any inequality with = > 0, and let S :=
- s

_'({j {jeN| of > 0}. If there exists i ¢ M with N €S, then nx > 1 is either
v, R

'.}:: not minimal, or identical to some inequality of Ax > 1. Otherwise N \ S# ¢,
o i ¢« M, and hence X defined by ilj =0, jeS, =1, je N\ S, satisfies
2

e

! 3

LN L e ~ Y .
-H‘-N“-m, -.H e "—\"m- " RS f—’wﬂx \ 'f L“w““r“' ~-\‘“»<

.....

~h~

=| 3 -_\\,s




i
‘oo TS

[
¥
i

o A
t o e gl
[}
|

A > 1, but aX = 0—¢~1; thus =nx ¥~1 is not a valid .inequality for P§(A) or

PI(A).I

<,

Valid inequalities for a polyhedron related to Pf(A), namely the convex
hull of those x & P}(A) that satisfy a given inequality cx ¢ Zy - 1, have
been studied in [1]. The inequalities derived there have been successfully
used as cutting planes, as reported in [2].

In this paper we characterize a class of facets of the polytope PI(A).
It is a well-known fact (see Chvatal [4]) that if one forms a positively
weighted sum of the inequalities of the system Ax > 1, 0 < x { 1, and rounds
up every coefficient on both sides, one gets a wvalid inequality. Such
inequalities are called rank 1 Chvatal inequalities. It is not easy, however, to
identify the conditions under which such an inequality is facet inducing. To
see the nature of the problem, consider the following

Example 1.1. Let
11001100
A= 10101010
01100001
Adding the rows of A, dividing by 2 and rounding up yields the inequality
x1+x2+x3+x5+x6+x7+x822
which is easily seen to define a facet of P(A). Now let A’ be the matrix
obtained by adding to the three rows of A a fourth one,
(0010001 1).
The above inequality remains of course valid, but it does not define a
facet of PI(A’). In fact, it becomes redundant, since the last inequality of

the system A'x > 1 cuts off the unique fractional vertex x = (%, %. %, 0, 0, 0

0, 0) of P(A), and P(A’) has only integer vertices: thus PI(A’) . P(A’).I
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3 2. A Class of Facets of P (A) s .-
F:’:’ o . . e
'..' - .
) We will be studying inequalities of the form ax > 2, with «, = 0, 1 or 2,
,_;:_ j ¢t N. As before, we let M and N be the row and column index sets,
el
-{-;.; respectively, of A. For each such inequality, we denote
X
A J(a) ={jeN|a, =t}, t=0,1,2
'y t J
Ff_: and simply write J t for Jt(a) whenever the meaning is clear from the
W
::': context.
Sk

With each nonempty subset S € M° we associate the inequality asx > 2,

:., where
3 0 ifa,. =0 forallices
‘ (2.1) a? = {2 if a;; =1 forallies
:'_} 1 otherwise
-~
:':".: Notice that if |S| =1, say S = {i}, the inequality «x > 2 is
it just a'x > 1 multiplied by 2.
- Let C denote the class of inequalities asx 22 for all S c M.
=
It is easy to see that C is in fact the class of inequalities obtainable from
J the system Ax > 1 by the following procedure, which we will also call C:
:‘_ Procedure C
o .
o (i) Add the inequalities a'x > 1, i ¢ §;
<N
Ry (ii) divide the resulting inequality by |S] - ¢, 0.5 < ¢ ¢ 1; and
e
~;j’ (iii) round up all coefficients to the nearest integer.
:-f Thus for any S ¢ M, ax > 2 is a valid inequality for PI(A). To show

. that the converse is also true, we define for every Q < N,

.“‘h '= 3 = 3
\:3: M(Q) :={i¢M] aij 0, Vje Q},
Nt with M(#) := M.
_;:'.
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Theorem 2.1. - Bvery valid- inequality fx > 2 for ’PI(‘A), with ﬂj
integer, J ¢t N, is dowinated by the inequality asx 2 2, where S = M(Jo(ﬂ)).

Proof. By contradiction. W.l.o.g., we may assume that ﬁj ¢ {0,1,2}.
The inequality asx 2 2 is well defined; for otherwise, i.e., if M(Jo(ﬂ)) = ¢,
then R defined by i‘cJ. =1, j = Jo(ﬁ), iJ. = 0 otherwise, satisfies Ax > 1

and violates pgx > 2, a contradiction.

If Bx > 2 is not dominated by asx > 2, then ﬂj < «; for some

b 4 X
j, ¢ N. From the definition of o> with S = M(Jy(8)), B, =0 implies
as. = 0; hence f. =1 and as. = 2. This in turn implies that
J g Jy
aij =1 for all i M(Jo(ﬂ)). Therefore %X defined by ’?‘j =1, for

Je Jo v {j*}, ij = 0 otherwise, satisfies Ax > 1, 0 ( x {1, but violates
Bx > 2, a contradiction. |

Thus every valid inequality for PI(A) with coefficients equal to 0, 1 or
2 is dominated by some inequality in the clase C. From now on we therefore
restrict our attention to this family.

Next we identify those members of the clase C that are not strictly
dominated by other members. Given any pair of inequalities asx > 2 and
«lx > 2 in C, such that Jo(as) =Jy(a’) and T e, it is clear from the
definitions that asx 2 2 dominates aTx > 2. Hence among all inequalities
as X > 2 with a fixed Jo, it is sufficient to consider those with S = M(Jo).

Further, given any inequality asx > 2 with 8§ = M(Jo), we will say that
the set Jo is maximal if for every j & J1 there exists k ¢ J1 \ {J}

such that a, = 1 for all i cM(JOU{j}). In other words, Jo is max-

k
imal if transferring any column from J1 to Jo requires the transfer of some
column from .'I1 to J2. This concept plays an important role in the sequel.
6

.................

“ -"W . '\ - * R A Tt . e ‘4"

NN A I LN W T N TP T
e e A e T e L L e T A AGAT SRR
W e . B SR S S A AN TN




§
b
kLt
254 Theorem 2.2. The inequality asx 2 2, where S = M(J,), 1is minimal if and
‘\f. :
el
¥ only if Jo is maximal.
': Proof. Necessity. If Jo is not maximal, then there exists J e J1 such
L
, that for every k ¢ J1 \ {Ji}, a = 0 for some i ¢ M(JOU{j}). But then
]
! the inequality aTx > 2, where T = M(JOU{j}), strictly dominates asx > 2.
ff' Sufficiency. Suppose asx > 2 is not minimal. Then there exists aTx > 2
'T:C in C such that aT < as and a’l.' < as. for some j = N\ J (as). If
N Jx Uk X 0

iy e Jy(a"), then T > S; but since § = M(Jy(a")), this implies Jy(a’) ;

" Jo(as). contrary to o) < «>. Hence .i* P Jl(as). But then Jo(as) v {J*}
.r: < Jo(aT) and for all k : Jl(as) \ {.j*}, there exists some i = M(Jo(as)u{j*})
" ¢ such that a,, = 0 (since k ¢ J (aT)); i.e., J (as) is not maximal. |

- ik 1 0
(-,
}'_: Example 2.1. Consider the set covering polytope defined by the matrix
.

\.:;- 1110000
b1 1101000

A=]11011000

At 0111100
T 1010111
b 0111010

A
«:) The inequality ),‘(x‘j : j=1,...,6) > 2, obtained by applying Procedure C to
oYl the subsystem consisting of rows 1, 2, 3, 4, 6, is not minimal, since the set
”_, Jo = {7} associated with it is not maximal: column 6 can be added to Jo
SN

S without having to transfer any column from Jl to J2’ since each of the
&
';-'.: remaining columns of I namely 1, 2, 3, 4, 5, contains at least one 0 in
)E:: some row i such that as = 8n = 0. Thus ):(x‘i : j=1,...,5) > 2 1is a valid
A inequality. It is also minimal, since the associated set J = {6,7} is
v maximal. Another valid inequality in class C is 2x1 + Xy + Xa + Xy > 2. The
. ,'.:: associated set Jp = {(5,6,7} is maximal, so this inequality is also minimal. |
‘ Next we address the question as to which inequalities of the class C are
::ﬁ facet inducing for PI(A). One obvious necessary condition for this is that
Y

7

'
:
\?n},}:z:‘_:,;,, ~ {..;,:.:,{‘E‘:a‘:-:.:f;:}:g& ,«,"~_.$_,,-,., ,,-‘_:,:;.3( :::"..:-:':',:’;f IRV »"-' ;.};.;.;:‘.-,;\}q.;_\\}\- S »\,:K 3 \-.}\,L\i-: -
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, " the inequality be minimal. In stating the cond‘itions for an inequality to be
facet defining, we will assume that PI(A) is full dimensional. This is the
case if and only if

(2.2) 2("15 tJeN)>2, iz M.

Assuming that (2.2) holds involves no 1loss of generality; for if .not, then
either PI(A) = ¢, or else there exists some F < N, F # 0, such that
X & PI(A) implies xj =1 for all j ¢ F. In the former case the inequality
is obviously not facet defining; whereas in the latter case setting xj =1,
Jj ¢ F, and removing the inequalities satisfied by this assignment, produces
a set covering polytope for which (2.2) is satisfied.

For any valid inequality asx > 2 in C, consider the set of pairs
J, h = J, such that

1

(2.3) a.. + a,

ij ih >1 for all i ¢ M(Jo).

We will call these pairs the Z-covers of A':’z 7)) the submatrix of A whose
rows and columns are indexed by M(Jo) and Jl’ respectively. We define the
2-cover graph of A ( Jo) as the graph G that has a vertex for every j ¢ J1
and an edge for every 2-cover of AM( Jo)
Further, for every k ¢ JO’ we define T(k) as the set of rows such that
k is the only column in Jo to cover T(k); i.e.,
T(k) = {ieM|a, =1,a.=0forall jsJ;\ {k}.

1)
Theorem 2.3. Let PI(A) be full dimensional and let asx 2> 2 be a minimal

A

valid inequality for PI(A), with § = M(JO)’ Then asx 2 2 defines a facet of

R A

- .".
A.‘-
a
s
s
N -
.
e
~
G
s
T

PI(A) if and only if

(1) every caomponent of the Z2-cover graph of A ) has an odd cycle;

M( Jo

(ii) for every k & Jo such that T(k) # & there exists either

(a) some j(k) ¢ JZ such that ajj(k)

= ] for all 1 «+ T(k);, or

.....................
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1'.
= - ‘ ' -
.‘ {Eé (b) some pair j(k), h(k) e Jl such that a.ij(]r) + ajb(lr) 2 1
‘\. for all i & T(k) U'M(Jo).

L Proof. Necessity. Suppose asx > 2 defines a facet of PI(A). Then there
R .
~ exists a collection of n affinely independent points xi e PI(A), such that
*- axsxi =2 for i=1,...,n. let X be the n x n matrix whose rows are the
_. vectors xi; then X is of the form (modulo row and column permutations)

o B
s 0 X, X,f,
where the columns of Xl, Xz and X3 are indexed by Jl, J2 and J0 respectively,
‘ Xz is the identity matrix of order |J2|, and every row of Xl is a row of the
-ij edge—vertex incidence matrix of the Z2-cover graph G of ASIE Jo) Since X is
: nonsingular, Xl is of full column rank, and hence every component of G is
nonbipartite. Thus (i) holds.

: | To show that (ii) also holds, suppose there exists k & JO and T(k) for

- which neither (a) nor (b) is satisfied. Then X, = 1 for every x & PI(A)
: such that asx = 2, which in turn implies (since PI(A) is full-dimensional)
‘ that the inequalities asx > 2 and Xy < 1 are the same, a contradiction.

‘:‘: Sufficiency. Suppose conditions (i) and (ii) are satisfied. We exhibit

5._; a set of n affinely independent points xke PI(A) such that asxk = 2,
g: k=1,...,n.

‘ For t = 0, 1, 2, let et and 0t denote the IJ t|—vector whose components
are all 1 and all 0, respectively. For t =0, 1, 2, let eg be the ,jth
,._ unit vector with |J t| components.
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Our first IJOI vectors xk, k & JO’ are defined as

f(eo - eg, o1 s e?) for some j & JZ’ if T(k) = ¢ and JZ ¢

(eo - eﬁ, e% + ei . 02) for some 2-cover (j,h) if
N J T(k) = ¢ = J,
. 4 -

(- e), 0! , ez.(k)) if T(k) # ¢ and (a) holds

J (with j(k) as in (a))
0 0 1 1 2 .
(e’ - , €. + , 0%) if (k) # ¢ and not (a) but (b)
T S0 T T holds (with j(k), h(k) as in (b))

By property (ii), these vectors exist and belong to PI(A).
Our next IJ l vectors are of the form

k - 0 1
X (e”, e

eh(k)' 0 ) , k = Jl.
where the pair J(k), h(k) e Jl satisfies (2.3), and the vectors e;(k) +
ei(k) are linearly independent. By property (i), there exists a set of

|31| vectors xk e PI(A) satisfying these conditions.

Finally, the last IJZI vectors are of the form
k 0 1 2

x = (e, 07, ek), k = Jz.
Here the vectors ei form the identity matrix of order |J2|. The existence
of these vectors xk : PI(A) follows from the definition of Jz.

It is now easy to see that the matrix X whose rows are the n vectors
xk, k ¢ Jo u Jl v Jz, is nonsingular. Also, every xk satisfies asxk = 2.

Hence asx 2 2 defines a facet of PI(A).l

Example 2.2. Consider the matrix A of example 2.1 and the valid
inequality }:(x‘i tj=1,...,8) > 2 for PI(A), which was shown to be minimal.
We have Jl = {1,...,5}, Jo = {6,7} and M(Jo) = {1,2,3,4}. The two—cover graph

f A;ZJ )? shown in Fig. 1, is connected and has odd cycles; thus condition
[+
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Fig. 1
(i) of Theorem 2.3 is satisfied. The only k & Jo such that T(k) # ¢ is 6,
with T(6) = {6}; and any of the pairs h, j ¢ J1 satisfies a.p + ai,j >1 for

all i M(Jo) v T(6) = {1,2,3,4,6}. Hence ):(x‘j : 3 =1,...,5) > 2 induces a
facet of PI(A).l '

3. The Class C and Chvatal’s Procedure
We have shown in section 2 that every valid ine_quality for PI(A) with
coefficients equal to 0, 1 or 2 is dominated by some inequality in the class C,
hence is obtainable by applying to the system Ax > 1 our Procedure C. The
latter is easily seen to be a specialized version of Chvatal’s procedure [4],
which consists of recursively performing the following operations on the
constraint set of an integer program:

0. Let the current set of constraints be

(I) ):(aijx.i : jeN) > bi’ i ¢ M, with all coefficients integer.




At the start, this is the set of inequalities which, together with the
integrality conditions, defines feasibility.

1. Generate all distinct inequalities of the form y(A)x > 10(A), where

7;00) [z(xiaij :ieM)], J e N

(3.1)

70N [I(Aibi : izM)]

with Ai > 0, i £ M, where fal is the smallest integer greater than
or equal to a, and where 15(7\), j ¢ N, and 70()\), are relatively prime.

2. Redefine the system (I) by adding to it all the inequalities generated
under 1, and go to 1.

Stop when no new inequalities can be obtained.

This procedure is known to yield the convex hull of the integer points
satisfying the initial set (I) after a finite number of applications of the
recursive steps 1, 2. The number of times the recursion needs to be applied
to obtain a particular inequality is called the rank of the inequality. The
original system together with the rank 1 inequalities forms the elementary
closure of the system. Thus from Theorem 2.1 we have the .following

Corollary 3.1. Kvery minimal valid inequality for PI(A) with coefficients
equal to 0, 1 or 2 belongs to the elementary closure of the system Ax > 1,
0<x< 1

Procedure C of section 2 is a specialized version of Step 1 above, with

the multipliers Ai defined by

(sl-e)! ifies
(3.2) )\i =
0 otherwise

for some S € M and 0.5 < ¢ < 1.

It turns out, however, that this choice of multipliers is much less special
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than it seems. In particular, again from Theorem 2.1, we have the following

Corollary 3.2. Let y(A\)x . ¥y o(l) be any rank 1 Chvatal inequality
obtained from the system Ax > 1, 0 { x < 1, with 700) = 2. Then yA) 2
y(\¥), where \¥ = \¥) is defined by (3.2), with S = M(Jy(\)).

In view of our findings that all minimal valid inequalities for PI(A) with
coefficients equal to 0, 1 or 2 belong to the elementary closure of Ax > 1, 0 ¢
x < 1, the question arises whether this property extends to some larger class
of valid inequalities. Our next theorem answers this question in the negative.

Theorem 3.3. For every k > 3, there exists a 0-1 matrix A and a
minimal valid inequality PBfx > k for PI(A) that 1is bpot contained 1Iin the
elementary closure of the system Ax > 1, 0 < x < 1.

Proof. Let k > 3 and let A be the edge-vertex incidence matrix of
Kk +1° the complete graph on k + 1 vertices. Then the inequality
(3.3) }:(x‘i : J=1,...,k+1) > k
is satisfied by every x ¢ PI(A), since any vertex cover of Kk +1 contains at
least k vertices. Also, (3.3) is minimal.

Now if the inequality (3.3) belongs to the elementary closure of the system

Ax > 1, 0 { x 1, then there exists a set of multipliers )‘i' >0, i-=

1,...,k, j = i+l,...,k+]1; By and T h=1,...,k+tl1, satisfying the relations

}‘12 + )\13 + }‘14 + .0+ Al,k+1 + B -7 <1
Mg thgg thgg teee FAg gty =7y L1
M3 * A3 FAggt et hg gy tag g il
(3.9) _
Mokl A2 ke o P A kel el T Ml S
and

(3.5) X(Xij :oi=1l,...,k; j=i+l,... k+1) - 2(7h : h=1,...,k+1) > k - 1.




R

But adding the inequalities (3.4) yields

o
L3

£

o 2x(xij : i=1,...,k; j=i+1,...,k+1) + z(ph ~ Yt h=1,...,k+1) < k + 1,
? or
°
*x-: IOy ¢ il ks =il .o ketl) = By ¢ h=l,.. kD)
3} < 2‘*15 :i=l,...,k; j=i+l, ... k+l) + %Z(ph R h=1,...,k+l)
\% which for k > 3 contradicts (3.5).]
w 4. The Class C and Full Circulant Submatrices
Eé? In this section we examine the relationship between minimal wvalid
E% inequalities for PI(A) with coefficients equal to 0, 1 or 2, and circulant
- submatrices of A with exactly one zero in every row and column. Such a
?S matrix, if of order k, will be denoted Ct—l. This is the k x k matrix with
j;; exactly k — 1 ones and one zero in every row and column. It will be called
. the full circulant of order k.
E; Consider the inequality asx > 2, where S = M(Jo). Often there exist
Eﬁ proper subsets T ¢ S such that aTx 22 is the same inequality as
~5' asx > 2. Such a subset TcsS will be called C—equjvalent to 8. If
ﬂi} T is C-equivalent to S and no proper subset of T has this property, we say
ﬂg that T is a winimal C-equivalent subset of S. A set S = M(Jo) may have
. several minimal C—equivalent subsets.
;i; Now let the inequality asx > 2 be minimal, i.e., let Jo be maximal. If
Eﬁi M(Jo) has a C-equivalent subset of cardinality < 2, then the inequality
;l asx > 2 is of course dominated by the sum of at most two inequalities of the
E? system Ax > 1. Suppose this is not the case, i.e., every minimal C-equivalent
$E subset of M(Jo) has cardinality > 3. Then we have the following
3
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Theorem 4.1. For every minimal C-equivalent subset T of M(JO)‘ the matrix

A‘;.‘ copntains as a submatrix 0:-‘1

Proof. Since T is minimal with respect to the property that aT = as, and

asx > 2 is a minimal inequality, it follows that for any Q ; T, a? > a?
b 4 b

for some j* ez N. Since Jo(as) < Jo(ao), j* £ Jo(as). Also, ,j* £ Jz(as).

, the full circulant of order t = |1].

Thus j*aJl(as), and a;; =1 forall isQ, a =0 forsomeisT\Q.

X ijy

"Since this is true for any proper subset of T and in particular for every

subset of the form Q = T \ {i} for some i ¢ T, it follows that for every row i

i j (i that cpey = = i ey
t T there exists a column j(i) ¢ Jl such tha ahJ(l) 0 for h =i and ah,](l)
=1 for all h «: T\ {i}. Clearly, the t columms j(i), i ¢ T, must be dis-
tinct since every column has exactly one 2zero in position i. But the
t-1
t -

submatrix of A;‘ consisting of these t columns is precisely C

Exsmple 4.1. Consider the matrix

1101001
0110010
A=10011100
0000111
0101001

The inequality of C associated with the row set S = {2,3,4,5} is

x2+x3+x4+x5+x6+x722,
and it is minimal, since Jo = {1} is maximal: any attempt to extend Jo
results in the transfer of some column from J, to J,. (For instance, if

1 2
column 2 is appended to Jo, the set M(Jo) shrinks to rows 3, 4 and column 5

is transferred to Jz).

However, the set M(Jo) = § is not minimal for the inequality asx 2 2.
Removing any one of the four rows of S produces a minimal C-equivalent subset.
If 'l'1 denotes the subset (2,3,4}, A,l.l contains Cg in columns 3, 5, 6.

For T2 = {2,3,5}, Cg consists of columns 2, 3, 4 of AT . Similarly, for
H]




D 2
T, = {2,4,5) and T,

! columns 4, 5, 7 of Ap > respectively. |
4

= {3,4,5}, 03 consists of columns 2, 6, 7 of AT and-
3

Theorem 4.1 establishes a correspondence between the minimal inequalities
i of the class C and the full circulant submatrices of A. The correspondence is
‘not one to one, since for any given minimal inequality asx >2 of C, there
A may be several minimal sets Ti C-equivalent to S, each one containing one or
§ several full circulants of order ITi" Nevertheless the full circulants of
x A can be used to list all the minimal inequalities in the class C, as will
presently be shown.

For convenience, we will adopt the notation
8 Jg(8) 1= {j e N|a;=0fralliss, ScM
Clearly, JO(S) = Jo(as), and also Jo('l') = Jo(as) for any C-equivalent subset

k! T of S.

Corollary 4.2. Bvery minimal inequality in C can be obtained by using

- Procedure C with S restricted to subsets of M such that

o (1) Jo(S) is maximal;

‘ (ii) AS contains a full circulant of order |S| K

_: (iii) There exists no T ; S satisfying (i) and (ii).

Proof. From Theorem 4.1, Procedure C can be restricted to sets S
: satisfying (i) and (ii). Further, Procedure C used with a set § that
*' satisfies (i), (ii) but not (iii) yields the same inequality as when used with any

8' > S such that J(8’) = J,(S) end §’ satisfies (ii), (iii) (with S = §8").]
o The correspondence between full circulants and minimal members of the
class C is also helpful in counting the latter, viz., in bounding their number.

Corollary 4.3. The number of minimal inequalities in C is O(Ik), where m

) = |M and k is the cardipality of the largest full circulant submatrix of A.
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égi
_—
M Proof. From the previous Corollary, the number of minimal members of C is
‘ f bounded by the number of row sets T such that AT contains C:_l with ¢t = |T|.
N
s Since A has (:) row sets of size i, if k is the order of the largest full
_
2?: circulant submatrix of A, then the number of row sets T such that AT
48
5:§ contains a full circulant of order |T| is bounded by
P
R k
e I (™ <.l
Y e |
h =3
(L .
‘I{J It is a well known result in polyhedral combinatorics (see, for instance,
20
o (61, [7], [8]) that minimal inequalities for a polyhedron PI(A) can often be
e
§:$ obtained by 1lifting minimal inequalities for a polyhedron PI(Av) for some
-2- V € N. The above Theorem and its Corollaries suggest that the minimal inequal-
{3
ities of the class C for PI(A) might be obtainable by lifting the minimal in-
’%;S equalities of C for some polyhedra of the form PI(AK), where K is the column
.-',-:.
Piﬁ index set of a full circulant. This, however, is not true, since in most cases
b -
where asx > 2 is a minimal inequality for PI(A), the corresponding inequality !
':-:" “
N B(x; ¢ jeK) 2 2 *
f'g is not minimal for PI(AK). This is illustrated by the following
-
J Example 4.2. Let
o
259 11010100
;iii 01101000
SN A=1]10100100
SN 01011011
§ 00100110
N 10011001
ﬁ*z The inequality
I
2 X+ ..o 4 X > 2
o is minimal for P (A), but

b
2 a

X1 + X, + X3 > 2

Y

P;

<&
2«

B

‘.‘ n.' l‘ "' ll
N
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is not minimal for PI(AK). where K = {1,2,3}, although AK contains the full
circulant C§.|

Thus restricting ourselves to the lifting of minimal inequalities for
polyhedra of the form PI(AK), with K defined as above, would make us miss
many, if not most, minimal inequalities for PI(A). The situation changes,
however, if instead of AK we consider submatrices of the form AL with L =
Ku JO’ as shown by our next result.

Theorem 4.4. Let asx 2 2 be a wminimal valid inequality for PI(A).
let T be a minimal C-equivalent subset of ”(JO)’ with |T| 2 3, and let K be
the column index set of a full circulant 0:_1 contained in A‘;‘, where t =
(4.1) )‘.(xj : Jek) > 2
Is a mipnimal valid inequality for PI(AL), where I = K v Jo. |

Proof. If Procedure C is applied to AI‘x 2 1with 8 = M(Jo), we obtain
the inequality (4.1), which is thus valid for P (A). Also, J; is maximal
for AL, since it is by definition maximal for A. Thus (4.1) is minimal
for P_(A"). |

In the above Example, K = {1,2,3}, Jo = {7,8}, and

+ X > 2

xl 2 + x3
is a minimal valid inequality for PI(AL), where L = {1,2,3,7,8}.

The converse of Theorem 4.4 is not true in general; i.e., if A contains the
full circulant C:—l with row and column sets R and K, respectively, and (4.1)
is a minimal valid inequality for PI(AI'), where L =Ku JO(R), the
corresponding inequality aRx > 2 obtained by applying Procedure C to the

system Ax > 1 with S =R is not necessarily minimal. To see this it is
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sufficient to notice that although JO(R) is maximal with respect to AL, it

need not be maximal with respect to A.

Example 4.3. Consider the matrix

Ot et et O Pt
HOMOMMO
OoO~OOO0OO0OO0O
WN POOO0OOO0OO

»>

T}
COO M =O -~
Okt O O O vt i
COrHO MO
OrOMROO

The circulant C, in the upper lefthand corner of A has row and column

sets R = {1,2,3} and X = {1,2,3}, respectively, and JO(R) = {4,5}.
The inequality
X) * Xy +xq > 2
is minimal for PI(AL), where L =K v JO(R) = {1,...,5}, since JO(R) is
is maximal with respect to AL. On the other hand, the inequality
+ X + x

+ x 2 2,

X) T Xy ¥ Xyt Xg t Xp + Xg
obtained by applying Procedure C to Ax > 1 with S =R, is not minimal,
since JO(R) is not maximal with respect to A: it is possible to add

’
1 9° If J0
denotes the augmented set (4,5,6}, M(Ja) = {3,4,5}, and the inequality

column 6 to Jo without transferring any columm from J, to J

obtained by applying Procedure C with § = M(Ja) is

+ x + x 2 2,

Xp *FHg F Xg ¥ Xq F xg
which is minimal and strictly dominates the inequality obtained by wusing
s = R.|

Further connections between minimal and facet defining inequalities for

polytopes of the form PI(AL) and PI(A) can be established by using the

theory of inequality lifting, but this is left to another paper.
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5. Generating Minimal Inequalities

We first discuss systematic ways of generating all minimal inequalities in
C, then we address the issue of generating certain subsets of inequalities.

The set of minimal inequalities in C can be partially ordered by
inclusion applied to the corresponding sets Jo. In other words, if ax > 2
and fx > 2 are minimal inequalities in C, one can say that ox > 2 precedes
gx > 2 if Jo(a) c Jo(ﬁ). Thus one can define a directed graph G with a
node for every minimal inequality of C, and an arc for every pair of minimal
inequalities such that one member of the pair is an immediate successor of the
other.

To generate all minimal inequalities without predecessors, one can use
Theorem 4.1 and list all maximal sets T € M such that A’l‘ contains a full
circulant submatrix. For each such T, if Jo(T) is maximal, then aTx > 2
is one of the minimal inequalities without predecessors; and conversely, all
such inequalitiea can be obtained this way.

Given a minimal inequality asx 2 2, its immediate successors in G are
those inequalities aTx > 2 such that T ¢ 8§, Jo(aT) is maximal, and there
exists no W, with T €< W c S and Jo(T) # JO(W) # JO(S), such that JO(W) is
maximal. Since there is no reason to be interested in generating inequalities
that are- the sum of two inequalities of Ax > 1, this rule can be amended by
requiring that |T| 2 3.

These two rules, one for generating all the minimal inequalities without
predecessors and the other for generating all immediate successors of a given
inequality, suffice for generating the whole family of minimal inequalities in
C. Note, however, that this procedure is not free of redundancy, in that a
minimal inequality can have more than one predecessor. Thus some checking

is required to exclude repetition.
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Consider the matrix:

Example 5.1.

~O OO
OOO rmirmd
OCOm~NO
OO0
~~~Oo0OO
COOO~
OCOO~O
OO~ 0O0O
O~ OO0
HFOOO0O
e - O
O e
et © o~
O
© rt =~ =t

The following tableau shows the minimal inequalities in C, all of which happen

to define facets of PI(A).

1 2 3 45 6 7 8 9101112131415

aj =

L B I N N N N N N N N el B B

et el el e el O o ol e e e el

L N N B B B I B W= i R N N N e ]

el e o ) e ] e e e et O o el et

rfri e et e O

PO rlrdrd el OO O rrd O il el

AHAOQ M~ OriO O e O i

e et Ol e OOl Ol ed O

Nt et O A1~ O OO~~~ O

el rd e el Q el rd el =N = O OO O

PN, e S A NN NN~~~

et O\ e pmd O = N et =l =t O\ =t

Nt N et NN e O et N

Lo B B I B~ B B B B B o B B S B B I

it S N =~ NONNON

¢ 10
~— (o] o~ —-
co o _ eo ~
1191981987
_ & & & o & &
¢198769887776666

5

445555
3334443454554555
2222332223343344

«a & o & e »

1111121111112223

123456789m

S contains the circu-

Consider the first inequality with § =M = {1,...,5}.

and

., as= (1,...,1)

4 =

lant 05 whose columns are 1,...,5. We have JO(S)

is a minimal inequality.

Thus asx > 2

is maximal.

3o(8)

and
Since JO(T) is maximal, is

Consider the second inquality with T = {1,2,3,4} and JO(T) = {10},
(1,1,1,1,2,1,1,1,1,0,1,1,1,1,1).

such that T c WcS§

Since there exists no set W

minimal inequality.

X > 2 is an immediate successor of asx > 2.

T
and J,(8) # J,(W) # J,(T), «

21




The other relations can be obtained similiarly. Fig. 2 shows the directed

graph representing the precedence relation between the inequalities in the
tableau. In this particular case, the graph has a single source, due to the fact
that JO(S) is maximal for S = M.

An alternative way of generating all the minimal inequalities of C that
are not the sum of two inequalities of Ax > 1, is to use the above defined
ordering but work backwards, from larger to smaller sets Jo. To generate all
minimal inequalities without successors, one can list all triplets T of
pairwise nonorthogonal rows such that there exists no other triplet W with
Jo('l') ; JO(W). For each such T, Jo(T) is easily seen to be maximal, hence
aTx > 2 is a minimal inequality without successors; and conversely, each such

inequality can be obtained this way.

S
B
[N
()
[
W

Given a minimal inequality asx > 2, its immediate predecessors in G are

those inequalities aTx > 2 such that § ¢ T, JO(T) is maximal, and there
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exists no W with S cW<cT and JO(S) # JO(W) # JO(T) such that JO(W)
is maximal. It follows from these conditions that T \ S must have the property
that aij = 0 for at least one i ¢ T\ S, J = JZ(S). Thus when no such T
exists, the minimal inequality asx > 2 has no predecessors.

Again, this procedure has redundancies, since a minimal inequality may
have more than one successor; therefore checks are required to avoid
repetition.

A frequent situation encountered in practice is the one where a fractional
solution to the current problem is available, and one is interested in
generating an inequality in C that cuts it off. Let X be a fractional
gsolution to Ax > 1, 0 < x {1, with

I={ij'§j=1}, F={,ij|0<3<'j<1},
and let

Q={izM|>‘¢j=limplies a; 5 = 0}.

Theorem 5.1. Let

(5.1) t(aJxJ. ;D JeF) > 2

be an inequality obtained by applying Procedure C to the system Agvi, 2 1,

o< < 1, such that

*F
(5.2) I(aJX'J. s Je F) <2,

and let T be any C-equivalent subset of M(Jo(a F)) (=Q). Then the inequality

asx 2 2 obtained by applying Procedure C to the system Ax > 1,
0<x <1, with S =17T, cuts off X.

Conversely, if ax 2> 2 1is a valid inequality for PI(A) that cuts off
% thena.=0, js I, and (5.1) isa valid inequality for P (Ay) that
cuts off )?’F,

Proof. In proving both statements we will make use of the following

fact that we claim to be true. If ax > 2 is a valid inequality for PI(A)

23




that cuts off X, then @ =0 for all j ¢ I. For suppose that o, > 1

J
X
for some j_ ¢ I. If a. =2, then oX > a.X. = 2, contrary to the agssump-
* Iy Iydy
tion that ax > 2 cuts off %. Thus ag = 1. Then there exists
x
i, ¢ M(J,(a)) such that a, . =0, or else ax > 2 would not be valid for
0 I*J*
PI(A). But then substituting ij = 1 into the inequalities al¥x > 1 and
X

axX > 2 yields
2(81*525 2 JeN\{J,}) 2 1
and

X(aj)?j 2 JeN\{G,}) 2 1,

respectively, with ai*j < @ for all j « N \ {j*}. Since X satisfies the
first of these inequalities, it cannot violate the second one. This proves
the claim.

Now let (5.1) and T be as stipulated, and suppose asx > 2, where S - T,
does not cut off x. Since X satisfies (5.2), it must be the case that
a§ > 0 for some ; e I, contrary to what we have just proved. Thus ax > 2
cuts off x.

Conversely, if ax > 2 is any valid inequality for PI(A) such that
aX < 2 then aj =0 for j ¢ I and hence (5.2) holds. Also, the same in-
stance of Procedure C that yields ax > 2 when applied to the system Ax > 1,

0 {x<1, yields the inequality (5.1) when applied to the system

Agxp 21, 0<xp<1, hence (5.1) is valid for PI(A;).I

Example 5.2. Consider the problem of minimizing X1 + Xg + Xq + 3x4 +
3x5 + 3x7 subject to Ax > 1, x ¢ {0,1}7, where A is obtained from the
matrix of Example 2.1 by adding the row (0,0,0,1,1,1,1). The (unique)
optimal solution is X = (%,%,%,0,0,1,0). We have F = {1,2,3}, I = {6} and

R, + Xy = g <2, i.e., condition (5.2) holds.

Q= {1,23,4}, and ﬁl + %y
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Applying Procedure C to Ax > 1, 0<{x<1, with § = Q, we obtain the
inequality x; + X, + X + x, + X5 2 2, which cuts off %.}

Thus in order to generate a minimal inequality in C that cuts off a given
fractional solution X, one can apply either one'of the two procedures dis-
cussed at the beginning of this section to the subsystem Ang > 1,
0 < Xp < 1, wup to the point where an inequality for PI(Ag) is generated
that cuts off iF; the corresponding inequality for PI(A) that cuts off

X 1is then easily identified. If no inequality for PI(Ag) is found that

cuts off X then there is no inequality for PI(A) in C that cuts off X.

F’

Some of the more recent methods for solving set covering problems never
solve the linear programming relaxation of the problem and thus never
generate fractional solutions to be cut off. These methods (see, for example,
(3]) use instead subgradient optimization or other techniques to find an
approximate (feasible) solution to the dual of the linear programming
relaxation, whose objective function value provides a lower bound on the value
of an optimal cover. To use the inequalities of the class C in this context,
one has to be able to anawer the following question: given a feasible solution
u to the dual of the linear relaxation of the set covering problem, is there an
inequality in C whose addition to the constraint set would make it possible to
strengthen the lower bound associated with u? Our next theorem addresses
this question.

Theorew 5.2. Let ax ) 2 be a minimal valid inequality for PI(A), and
let T be any C-equivalent subset of M(Jo(a)). Further, let u ¢ F o satisfy
u) 0, ud { c, and define

G(T)k ;= .in{cJ. - z("jajj : IeM\T) @ Je Jk(a)}, k=12,

with

5(T) := min{s(1),, éo (1) )




o
3
2 fhen
< }:(uj : ieM\T) + 2(T)  cx
" -
N for all x e {0,1)° satisfying Ax > 1.
"
:; Proof. Define U ¢ IMI by
b
) 0 ieT :
.-\3
o 9, = u, iezM\T
S5 1 1
e &(T) i = |Ml +1.
o Then >0 and
k-7 Iy . ieM) -
:::::3 c'j Z(uiaij : izM) u|M|+1aj
,\:.' = ¢, - T(u.a,. : itM\T) - 6(T)a. jeN
J 11 J
A
T
SO 6(T), >0 Je Jy(a)
el 1= 1
> c.j - z(uiai.}' : ieM\T) - 6(T)2 20 Je Jz(a)
W s
x.i:::: 0 .>- 0 J & Jo(a)i
~:$1
Sl
s i.e., U is a feasible solution to the linear program dual to
.. (5.3) min{cx @ Ax > 1, ax > 2, x > 0}.
o
AR Therefore
O
.f\.'.’ . .
o I(u; : i=1,...,|M|+1) = E(u; : ieM\T) + 26(T)
oo
Ly £ ex
T n
:}f:: for any x satisfying Ax > 1, ax > 2, x> 0, hence for any x ¢ {0,1}
way
‘3:7.3: satisfying Ax > 1.]
{-. N Corollary 5.3. Adding ax ) 2 to the constraint set Ax ? 1 strengthens
.:\_.‘ the lower bound on cx provided by u if and only if
b N e
R 5.4) 60> Feu, : qep).

If (5.4) holds and, in addition, u is an optimal solution to the dual of
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(5.5) min{cx : Ax > 1, x> 0},
then the inequality ax 2 2 cuts off alj optimal solutions to (5.5).
Proof. The difference between the lower bounds provided by @ and u
(i.e., the difference due to ax > 2) 1is
}:(ui : 1i:M\T) + 26(T) - ):(ui : ieM)
= 26(T) - }:(ui ¢ ieT),
which proves the first statement.
If this difference is positive and u is an optimal solution to the dual of
{5.5), then for any optimal solution x to (5.5),
cx = L(u; @ izM)
< }:(ﬁi : ieM\T) + 26(T) < cx
for any x satisfying Ax > 1, ax > 2, x > 0. Hence the inequality ax > 2
cuts off x.|
Note that a straightforward modification of Theorem 5.2 and Corollary 5.3
holds for the <case when the constraint set Ax > 1 is amended by
aix.z 2, i M’, i.e., the dual constraint set uA (¢ is replaced by

uA + }:(uim:l : izM’) £ c.

In other words, inequalities in C that improve the lower bound can be

generated recursively.
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